Reinforcement Learning for Robotic Control

Xuezhi Niu

CPS Lab, IT Department, Uppsala University xuezhi.niu@it.uu.se

> March 26, 2025 SysCon Seminar

UPPSALA UNIVERSITET

Introduction 00000000	Reinforcement Learning 000000	Results 0000	Discussion 0000000
Agenda			
		J VER	

1 Introduction

2 Reinforcement Learning

3 Results

CPS Lab, IT Department, UU

CPS Lab, IT Department, UU

ntroduction	Reinforcement Learning 000000	Results 0000	Discussion 0000000
Robotics			
			ERITA
What is	s a Robot?		
A robot decides compon	is a physical system that per how to act, and executes act ents.	ceives its environment tions through mecha	nt, nical
A robot	is a controlled system.		
• Inp	ut: control commands (forces,	, torques, velocities)	
• Sys • Ou	stem: robot dynamics (often n tput: measurable states (posit	onlinear, uncertain) ions, velocities, force	es)

き わくぐ

CPS Lab, IT Department, UU

0000000				
Example of Robots	in Our L	.ab		
LocomotionNavigation	I	ManipulationMany More		CPS-LAB
Figure 1: Drone Tello from I Figure 2: Go2 Quadruped Roboo Uniting (compine coop)	DJI. Fig from t from	ure 3: myAGVs and myCobots n Elephant Robotics.	Figure 4: Nova5 from with Robotiq 2F85 G	Dobot Robotics ripper.
			< ロ > < 団 > < 亘 > <	≣। ► ≣ •) ९ (~

Introduction

CPS Lab, IT Department, UU

Introduction 0000000	Reinforcement Learning	Results 0000	Discussion 000000
Robot Controls			
			VFDITA

Control design answers the question

"Given what the robot knows, how do we choose actuator signals to achieve desired behavior?"

Figure 5: Typical robot control architecture with sensing feedback.

CPS Lab. IT Department. UU

< 17 ►

Introduction	
00000000	

Why RL?

Results

Reinforcement Learning (RL) comes into play when

- The model is unknown or complex
 - nonlinear dynamics
 - unmodeled effects
- The interaction to world changes
 - different terrains
 - varying payloads
 - environmental disturbances
- The task requires too many manual loops to tune
 - complicated objectives
 - multi-step decision making
 - competing constraints

These are often summarized under the sim2real gap [1]

Introduction 00000●00	Reinforcement Learning 000000	Results 0000	Discussion 0000000
RL Commons			
			7/11

RL

- Solves MDPs without known models (although model-based RL)
- Learns through trial and error using rewards and penalties
- Data is not independent and identically distributed (i.i.d.); past outputs affect future inputs

Optimal Control

- Solves control problems with known models
- Minimizes a cost function derived from system physics

Supervised Learning

- Given i.i.d. data $\mathcal{D} = \mathbf{x}_i, y_i$, learn to predict y from \mathbf{x}
- Assumes known ground truth in training

Dynamic Programming

- A framework used by both RL and Optimal Control
- Needs known dynamics for direct application

Figure 7: Typical robot control architecture with sensing feedback.

Xuezhi Niu xuezhi.niu@it.uu.se

Image: A match the second s

RL in Control

Xuezhi Niu xuezhi.niu@it.uu.se

CPS Lab, IT Department, UU

Introduction 00000000	Reinforcement Learning 0●0000	Results 0000	Discussion 0000000
What is RL?			

RL Goal

Learn a policy that maximizes the expected cumulative reward

- Agent: follows a policy/function to act based on the state and received rewards
- Policy (π): maps states to actions
- Action (*a_t*): decision or control input
- State (*s*_t): current situation

Figure 10: A tendon-driven Soft Quadruped robot (SoftQ).

00000000	00000	iQ	0000	0000000
RL Taxor	ıomy			
Robot Decisi	t-environment in ion Process (MD	teraction process is mod PP) $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r angle$, and RL	deled as a Ma is to optimize	irkov e
	$ heta^* =$	$\arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} \gamma \right]_{t}$	$\gamma^t r_t$	
generate sampl (i.e. run the pol	fit $V(s)$ or $Q(s, a)$ fit a model/ estimate the return inprove the policy set $\pi(s) = \arg \max_a Q(s, a)$ 2: Value based RL	evaluate returns $R_r = \sum_t r(s_t, a_t)$ fit a model/ estimate the return (i.e. run the policy) $\theta \leftarrow \theta + \alpha \nabla_{\theta} E[\sum_t r(s_t, a_t)]$ Figure 13: Policy based RL	(i.e. run the policy) θ Figure 14: Actc	fit V(s) or Q(s, a). evaluate returns using V or Q! fit a model/ estimate the return improve the policy $\leftarrow \theta + \alpha \nabla_{\theta} E[\sum_{t} r(s_{t}, a_{t})]$ pr-critic (AC) RL
Xuezhi Niu <i>xuezh</i>	hi.niu@it.uu.se		CPS La	b, IT Department, UU
RL in Control				13 / 27

Reinforcement Learning

Introduction	Reinforcement Learning	Results	Discussion
00000000	000●00	0000	0000000
SAC			

RL problem can be defined to find the optimal policy π^*

$$\pi^* = rg\max_{\pi} V_{\pi}(s_t) = rg\max_{\pi} \mathbb{E}_{a_t \sim \pi} \left[Q_{\pi}(s_t, a_t) - lpha \ln \pi(a_t \mid s_t)
ight]$$

SAC maximizes both expected return and policy entropy

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} r(s_t, a_t) + \alpha H(\pi(\cdot \mid s_t)) \right]$$

CPS Lab, IT Department, UU

CPS Lab. IT Department, UU

Reinforcement Learning

Results

Model-Based Gait Learning

Learn a system model from data, improving training efficiency and minimizing the exploration space [3]

Figure 15: Training process diagram for model-based RL

Xuezhi Niu xuezhi.niu@it.uu.se

CPS Lab, IT Department, UU

Image: A mathematical states and a mathem

CPS Lab, IT Department, UU

Introd	uction

Reinforcement Learning

Results

Discussion 0000000

Walking Gait (Trot)

Training results in simulations and reality SoftQ [3] Go2 [5]

CPS Lab, IT Department, UU

Introduction 00000000	Reinford 00000	ement Learning O	Results 00●0	Discussion 0000000
Reward	Functions			
Reward Reward	ard shaping is an a for SoftQ [3]: $r = \epsilon_1 \frac{T_s}{T_f} + (1 + 1)$ for Go2 [5]:	art, often requiri - $\epsilon_2 v_x(t) - v_{ref}) - \epsilon_3 \ddot{a}$	ng intuition $\ - \epsilon_4 \ \mathbf{a}_t - \sigma_{\text{threshold}} \ - \epsilon_4$	$5\left(\mathbf{a}_t - \frac{\sum_{i=1}^T \mathbf{a}_i}{T}\right)^2.$
	Term	Equation	Weight	
	$ \begin{array}{c} r_{v_{creat}} : xy \text{ velocity tracking} \\ r_{v_{creat}} : y_{av} velocity tracking \\ r_{errow} : swing phase tracking (force) \\ r_{errow} : stance phase tracking (velocity) \\ r_{hcreat} : body height tracking \\ \end{array} $	$ \begin{array}{c} & \exp\{- \mathbf{v}_{xy}-\mathbf{v}_{xy}^{\text{effed}} ^2/\sigma_{vxy}\}\\ & \exp\{-(\omega_z-\omega_x^{\text{effed}})^2/\sigma_{vxy}\}\\ & \sum_{\text{fost}}[1-C_{\text{fost}}^{\text{effed}}(\theta^{\text{effed}},t)]\exp\{- \mathbf{I}_{xy} ^2/\sigma_{vxy}\}\\ & \sum_{\text{fost}}[C_{\text{fost}}^{\text{effed}}(\theta^{\text{effed}},t)]\exp\{- \mathbf{v}_{xy} ^2/\sigma_{vxy}\}\\ & (\mathbf{h}_z-\mathbf{h}_z^{\text{effed}})^2 \end{array} $	$\begin{array}{c} \overline{0.02} \\ 0.01 \\ \overline{0.01}^2 \\ \overline{\sigma_{cf}} \\ -0.08 \\ -0.2 \\ \end{array}$	Task Augmented Auxiliary

11			
r demd : body pitch tracking	$(\phi - \phi^{\text{cmd}})^2$	-0.1	
$r_{a_{y}^{cmd}}$: raibert heuristic footswing tracking	$(\mathbf{p}_{x,y,\text{foot}}^f - \mathbf{p}_{x,y,\text{foot}}^{f,\text{cmd}}(\boldsymbol{s}_y^{\text{cmd}}))^2$	-0.2	T 1 4 11
r, f, cmd: footswing height tracking	$\sum_{\text{foot}} (\mathbf{h}_{z,\text{foot}}^{f} - \mathbf{h}_{z}^{f,\text{cmd}})^{2} C_{\text{foot}}^{\text{cmd}}(\boldsymbol{\theta}^{\text{cmd}}, t)$	-0.6	Fixed Auxiliary
z velocity	v_z^2	$-4e-4 \leftarrow$	
roll-pitch velocity	$ \omega_{xy} ^2$	-2e-5	
foot slip	$ \mathbf{v}_{xy}^{\text{foot}} ^2$	-8e - 4	
thigh/calf collision	1 collision	-0.02	
joint limit violation	$\mathbb{1}_{q_i > q_{max} \mid \mid q_i < q_{min}}$	-0.2	
joint torques	$ \tau ^2$	-2e - 5	
joint velocities	$ \dot{q} ^2$	-2e-5	
joint accelerations	q ²	-5e-9	
action smoothing	$ {\bf a}_{t-1} - {\bf a}_t ^2$	-2e-3	
action smoothing, 2nd order	$ \mathbf{a}_{t-2} - 2\mathbf{a}_{t-1} + \mathbf{a}_t ^2$	-2e-3	

Table 1: Reward structure: task rewards, augmented auxiliary rewards, and fixed auxiliary rewards.

メロト メロト メヨト メヨト

Introduction	Reinforcement Learning	Results	Discussion		
00000000		000●	0000000		
What if Multi-Robots?					

Many real-world robotic tasks involve multiple robots working together:

- Cooperative transport
- Multi-robot exploration
- Multi-arm manipulation

Key challenges and needs:

- Building **decentralized** control systems with **heterogeneity**.
- Agents must learn policies not only from the environment but also by anticipating and responding to other agents' actions
- The environment becomes **non-stationary** for each agent (others are constantly learning too)
- Requires learning coordination, adaptability, and often negotiation

CPS Lab. IT Department, UU

< 17 ▶

CPS Lab, IT Department, UU

Introduction	Reinforcement Learning	Results	Discussion
00000000	000000	0000	0●00000
Symbiosis!			

What is Symbiosis?

A biological relationship where two or more organisms interact for continuous existance, including mutualism, commensalism, and parasitism.

 Mycorrhizal networks between trees and fungi — sharing resources and information to support collective survival

Figure 16: Mycorrhizal networks between trees and fungi. Focus on **mutualism**: Agents shares critical information to support collective behaviors [6].

CPS Lab. IT Department, UU

Figure 17: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining individual Q-networks for local decision making. The framework integrates sampling from the environment (orange arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online and target networks respectively, with individual buffers for experience replay. [6]

CPS Lab. IT Department, UU

Introduction	Reinforcement Learning	Results	Discussion
00000000	000000	0000	000●000
Preliminary results			

Figure 18: Layout of the simulated warehouse environment (60m \times 60m). [6]

Figure 19: Evaluation of static recharging and MARL with and without symbiosis. [6]

< □ > < 同 >

10.7% system performance improvement and 13.81% resource utilization efficiency

Discussion 0000000 Symbiosis into MARL (2) Symbiosis into reward shaping. [7] $R_i = \alpha P_i + \beta \sum_{j \neq i} \Delta P(a_i, a_j),$

Xuezhi Niu xuezhi.niu@it.uu.se

CPS Lab, IT Department, UU

A B +
 A
 B +
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Results

< □ > < 同 >

Thank you for your attention!

I look forward to your questions and discussions.

Feel free to reach out: xuezhi.niu@it.uu.se

Xuezhi Niu xuezhi.niu@it.uu.se

CPS Lab, IT Department, UU

Introduction	Reinforcement Learning	Results	Discussion
00000000	000000	0000	○○○○○●
References			

▲ Back to start

- S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo, C. Atkeson, D. Fox, K. Goldberg, J. Leonard et al., "Sim2real in robotics and automation: Applications and challenges," *IEEE transactions on* automation science and engineering, vol. 18, no. 2, pp. 398–400, 2021.
- [2] "Rule-based control," https://www.sciencedirect.com/topics/engineering/rule-based-control, accessed: 2025-03-19.
- [3] N. Xuezhi, T. Kaige, G. B. Didem, and F. Lei, "Optimal gait control for a tendon-driven soft quadruped robot by model-based reinforcement learning," in 2025 IEEE International Conference on Robotics and Automation (ICRA), 2025.
- [4] Q. Ji, S. Fu, K. Tan, S. T. Muralidharan, K. Lagrelius, D. Danelia, G. Andrikopoulos, X. V. Wang, L. Wang, and L. Feng, "Synthesizing the optimal gait of a quadruped robot with soft actuators using deep reinforcement learning," *Robotics and Computer-Integrated Manufacturing*, vol. 78, p. 102382, 2022.
- [5] G. B. Margolis and P. Agrawal, "Walk these ways: Tuning robot control for generalization with multiplicity of behavior," *Conference on Robot Learning*, 2022.
- [6] N. Xuezhi, C. B. Natalia, and G. B. Didem, "Enabling symbiosis in multi-robot systems through multi-agent reinforcement learning," in 2025 IEEE 8th International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE, 2025.
- [7] N. Xuezhi and G. B. Didem, "Investigating symbiosis in robotic ecosystems: A case study for multi-robot reinforcement learning reward shaping," in 2025 9th International Conference on Robotics and Automation Sciences (ICRAS) (under review). IEEE, 2025.

CPS Lab, IT Department, UU

イロト イボト イヨト イヨ