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Robotics

What is a Robot?

A robot is a physical system that perceives its environment,
decides how to act, and executes actions through mechanical
components.

A robot is a controlled system.
¢ Input: control commands (forces, torques, velocities)
e System: robot dynamics (often nonlinear, uncertain)

e Output: measurable states (positions, velocities, forces)
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Example of Robots in Our Lab

® | ocomotion ® Manipulation

CPS-LAB

® Navigation ® Many More..

P

Figure 1: Drone Tello from DJI.

Figure 3: myAGVs and myCobots
from Elephant Robotics.

Figure 4: Nova5 from Dobot Robotics
Figure 2: Go2 Quadruped Robot from with Robotiq 2F85 Gripper.
Unitree (coming soon).
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Robot Controls

Control design answers the question

"Given what the robot knows, how do we choose actuator signals
to achieve desired behavior?”
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Controls

Figure 5: Typical robot control architecture with sensing feedback.
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Why RL?

Reinforcement Learning (RL) comes into play when

® The model is unknown or complex
® nonlinear dynamics
® unmodeled effects

® The interaction to world changes
® different terrains
® varying payloads
® environmental disturbances

® The task requires too many manual loops to tune
® complicated objectives
® multi-step decision making
® competing constraints

These are often summarized under the sim2real gap [1]
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RL Commons

® Solves MDPs without known models (although model-based RL)
® |earns through trial and error using rewards and penalties

® Data is not independent and identically distributed (i.i.d.); past outputs affect future
inputs

.

Optimal Control

® Solves control problems with known models

® Minimizes a cost function derived from system physics

A

Supervised Learning

® Given i.i.d. data D = x;, y;, learn to predict y from x

® Assumes known ground truth in training

A,

Dynamic Programming

® A framework used by both RL and Optimal Control

® Needs known dynamics for direct application

Xuez
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How RL? In a quadruped r

Rule-based Controls [2]

_——
SENSOR
[ Inci

——»{ Dynamics models }—» Gait planning}—b{ Actuation }—»{ PLANT }——»

Figure 6: Typical robot control architecture with sensing feedback.

RL-based Controls

e
SENSOR
/]

RL A,
gent PLANT -
[

Figure 7: Typical robot control architecture with sensing feedback.

Figure 8: Unitree Go2 locomotion
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Deployment on Real Robot

Deployed on Raspberry pi 4B, trained on a normal PC [3]

T T Tlectricn chlaEr?iﬁ“;re_i
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g - 3 Iy GPIO I Servo motors x3
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@
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What is RL?

Learn a policy that maximizes the expected cumulative reward

Agent: follows a policy/function to act based on

[ ]
the state and received rewards
® Policy (7): maps states to actions
® Action (a;): decision or control input
[ ]

State (s¢): current situation

[Agent)—

reward
state s;

fe | ria

Xuezhi Niu xuezhi.niu@it.uu.se

|
1 Sit1 | Environment
I Sl

Figure 10: A
tendon-driven Soft
Quadruped robot
(SoftQ).

action a;
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Reinforcement Learning
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Robot-environment interaction process is modeled as a Markov
Decision Process (MDP) (S, A, P, r), and RL is to optimize

. t
0" = arg maaxETNpe(T) zt:'y r

fit V(s) or Q(s, a)

fit a model/

generate samples
(i.e. run the policy)

improve the policy

set 7(s) = arg max, Q(

estimate the return

generate samples
(i.e. run the policy)

s, a)

evaluate returns

Re= 3 rse, ar)

fit a model/
estimate the return

improve the policy

fit V(s) or Q(s, a).
evaluate returns
using Vor Q!

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy

0« 0+ aVgE[Y, r(st. ar))

6«6+ anE[Zr r(st, a,)]
Figure 12: Value based RL

Figure 13: Policy based RL Figure 14: Actor-critic (AC) RL
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RL problem can be defined to find the optimal policy 7*

7" = argmax Vi (s¢) = argmaxEaor [Qr(St, a) — alnm(ae | st)]

SAC maximizes both expected return and policy entropy

7" = argmaxE, Z r(st, at) + aH(w(- | st))
t

St
Agent
Rewards
gl Critic r,
Q(spa)
\—< Environment
Error Entropy
H (7 (|s.)
[
Actor Action
> 7 (s) a,
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Model-Free Gait Learning

Trot gait actor network (SAC) — SoftQ [4]

Motions & Contacts
Ox,y,z: Vx,y,z: FnFLFRRRRL

u(PWNMs x 12)

PWMs x12

Trot gait policy network (PPO) — Go2 [5]

Motions & Joints . . g‘
Joint actions [

x12

Vi Wxyzr & Ve 40 4,
h, u(q x 12)
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Model-Based Gait Learning

Learn a system model from data, improving training efficiency and
minimizing the exploration space [3]

States i Agel
e
. i
collection @ R\ ciion \\
‘v “’ \
States MY
.

Deploy on the
real system

e Train a surrogate 6 . .
model using DNN reinforcement learning

Figure 15: Training process diagram for model-based RL
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Walking Gait (Trot)

Training results in simulations and reality
SoftQ [3] Go2 [5]
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Reward Functions

Reward shaping is an art, often requiring intuition

T .
Reward for SoftQ [3]: r= e1 7% + (1 — e2|vx(t) — vier) — e3llatll — eallac — Tthreshold | — €5 (at =
Reward for Go2 [5]:

Term Equation Weight
""" acking T T T exp{=lvay — VT ouey b T T T T T T T T T T 002 - Tusk
_ uﬂm)z /o 1 as|
"rr“,m swing phase tracking (force) Sl — CoE(@™ ) [exp{ — (™% /ot } =0.08% ~ _
7 ema stance phase tracking (velocity) S oGl (0™, )] exp{ vy |* /o } —0.08! N
‘gh‘m., body height tracking (hz — hS™)? —0.21 ~~- Augmented Auxiliary
'
w'd body pitch tracking (¢ — ™2 —0.11
‘ I agpa taibert heurisic footswing tracking (b, = P (557 —0.2, ) -
footswing height tracking — hfend)2 o (gend ) —0.6) _ - - - Fixed Auxiliary

17 velocity —de—dg -~
Toll-pitch velocity ~2e-5!
foot slip [vieo | —Be—41
thigh/calf collision Leoliision —0.02,
joint limit violation 10, > gmazl19: <dmin —0.2!

joint torques

Jninl velocities

joint accelerations

action smoothing

'action smoothing, 2nd order

Table 1: Reward structure: task rewards, augmented auxiliary rewards, and fixed auxiliary rewards.
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What if Multi-Robots?

Many real-world robotic tasks involve multiple robots working together:
e Cooperative transport
® Multi-robot exploration
® Multi-arm manipulation
Key challenges and needs:
® Building decentralized control systems with heterogeneity.

® Agents must learn policies not only from the environment but also
by anticipating and responding to other agents’ actions

® The environment becomes non-stationary for each agent (others
are constantly learning too)

® Requires learning coordination, adaptability, and often
negotiation
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Symbiosis!

What is Symbiosis?

A biological relationship where two or more organisms interact for

continuous existance, including mutualism, commensalism, and
parasitism.

® Mycorrhizal networks between trees and fungi — sharing resources and
information to support collective survival

2 L

Figure 16: Mycorrhizal networks between trees and fungi.

Focus on mutualism: Agents shares critical information to support
collective behaviors [6].

Xuezhi Niu xuezhi.niu@it.uu.se
RL in Control
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Symbiosis into MARL (1)

—> action |

|
-——) sharingl

|
—> obs aj oy,

|
\ [ Multi-agent environment

Figure 17: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining
individual Q-networks for local decision making. The framework integrates sampling from the environment (orange
arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online
and target networks respectively, with individual buffers for experience replay. [6]
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Preliminary results

1 . - - —
Robot | /
o e " / /\
M \ \/'/J\
© '
O )
o]
®
/
/
/
/

atic
——#— Sym MARL

Figure 18: Layout of the simulated warehouse
environment (60m X 60m). [6]

FTE—T
Puckaze Compltion

Figure 19: Evaluation of static recharging and MARL with and
without symbiosis. [6]

10.7% system performance improvement and 13.81% resource
utilization efficiency
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Symbiosis into MARL (2)

Symbiosis into reward shaping. [7]

Ri=aPi+ B> AP(a), ),
J#I
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Thank you for your attention!

| look forward to your questions and discussions.

Feel free to reach out:
xuezhi.niu@it.uu.se
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