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Robotics

What is a Robot?
A robot is a physical system that perceives its environment,
decides how to act, and executes actions through mechanical
components.

A robot is a controlled system.
• Input: control commands (forces, torques, velocities)
• System: robot dynamics (often nonlinear, uncertain)
• Output: measurable states (positions, velocities, forces)
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Example of Robots in Our Lab

• Locomotion
• Navigation

• Manipulation
• Many More..

Figure 1: Drone Tello from DJI.

Figure 2: Go2 Quadruped Robot from
Unitree (coming soon).

Figure 3: myAGVs and myCobots
from Elephant Robotics.

Figure 4: Nova5 from Dobot Robotics
with Robotiq 2F85 Gripper.
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Robot Controls

Control design answers the question
”Given what the robot knows, how do we choose actuator signals
to achieve desired behavior?”

PLAN ACT

Higher level controls
- Decision making

- Task planning

Lower level controls
- Motor control

- Body control

ROBOT WORLD
Simulated for the dynamics and kinematics

SENSOR

Controls

Plants

Figure 5: Typical robot control architecture with sensing feedback.
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Why RL?

Reinforcement Learning (RL) comes into play when
• The model is unknown or complex

• nonlinear dynamics
• unmodeled effects

• The interaction to world changes
• different terrains
• varying payloads
• environmental disturbances

• The task requires too many manual loops to tune
• complicated objectives
• multi-step decision making
• competing constraints

These are often summarized under the sim2real gap [1]
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RL Commons

RL

• Solves MDPs without known models (although model-based RL)
• Learns through trial and error using rewards and penalties
• Data is not independent and identically distributed (i.i.d.); past outputs affect future

inputs

Optimal Control

• Solves control problems with known models
• Minimizes a cost function derived from system physics

Supervised Learning

• Given i.i.d. data D = xi, yi, learn to predict y from x
• Assumes known ground truth in training

Dynamic Programming

• A framework used by both RL and Optimal Control
• Needs known dynamics for direct application
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How RL? In a quadruped robot example

Rule-based Controls [2]

Dynamics models Gait planning Actuation PLANT

SENSOR

Figure 6: Typical robot control architecture with sensing feedback.

RL-based Controls

RL Agent PLANT

SENSOR

Figure 7: Typical robot control architecture with sensing feedback.

Figure 8: Unitree Go2 locomotion
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Deployment on Real Robot

Deployed on Raspberry pi 4B, trained on a normal PC [3]
Actuator Firmware

IMU

ToFs

GPIO

Kinematics
convertion

Electrical
Firmware

Force
sensors

I2C

I2C
UART

External mode

Distances to surroundings
Contact forces

Quaternions and linear accelerations
State

estimate

Obs Acts

Control Policy

Controller

FL Leg actuation
Servo motors x3

Actuation

GPIO FR Leg actuation
Servo motors x3

RR Leg actuation
Servo motors x3

RL Leg actuation
Servo motors x3

PD
controllers

Status 
monitor 
Task 
scheduler

Figure 9: Real deployment control architecture.

Xuezhi Niu xuezhi.niu@it.uu.se CPS Lab, IT Department, UU
RL in Control 10 / 27



Introduction Reinforcement Learning Results Discussion

1 Introduction

2 Reinforcement Learning

3 Results

4 Discussion

Xuezhi Niu xuezhi.niu@it.uu.se CPS Lab, IT Department, UU
RL in Control 11 / 27



Introduction Reinforcement Learning Results Discussion

What is RL?

RL Goal
Learn a policy that maximizes the expected cumulative reward

• Agent: follows a policy/function to act based on
the state and received rewards
• Policy (π): maps states to actions
• Action (at): decision or control input
• State (st): current situation

Figure 10: A
tendon-driven Soft
Quadruped robot
(SoftQ).

Agent

Environment

action at

si+1

ri+1
state st

reward
rt

Figure 11: Typical robot control architecture with sensing feedback.Xuezhi Niu xuezhi.niu@it.uu.se CPS Lab, IT Department, UU
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RL Taxonomy

Robot-environment interaction process is modeled as a Markov
Decision Process (MDP) ⟨S,A,P, r⟩, and RL is to optimize

θ∗ = argmax
θ

Eτ∼pθ(τ)

[∑
t

γtrt

]

fit a model/
estimate the return

improve the policy

generate samples
(i.e. run the policy)

fit V(s) or Q(s, a)

set π(s) = argmaxa Q(s, a)

Figure 12: Value based RL

fit a model/
estimate the return

improve the policy

generate samples
(i.e. run the policy)

evaluate returns
Rτ =

∑
t r(st, at)

θ ← θ + α∇θE
[∑

t r(st, at)
]

Figure 13: Policy based RL

fit a model/
estimate the return

improve the policy

generate samples
(i.e. run the policy)

fit V(s) or Q(s, a).
evaluate returns
using V or Q!

θ ← θ + α∇θE
[∑

t r(st, at)
]

Figure 14: Actor-critic (AC) RL
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SAC
RL problem can be defined to find the optimal policy π∗

π∗ = argmax
π

Vπ(st) = argmax
π

Eat∼π [Qπ(st, at)− α lnπ(at | st)]

SAC maximizes both expected return and policy entropy

π∗ = argmax
π

Eπ

[∑
t

r(st, at) + αH(π(· | st))

]
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Model-Free Gait Learning

Trot gait actor network (SAC) → SoftQ [4]

Motions & Contacts
θx,y,z, vx,y,z, FnFL,FR,RR,RL

u(PWMs × 12)
PWMs ×12

Trot gait policy network (PPO) → Go2 [5]

Motions & Joints
vx,y,z, ωx,y,z, g, vcmd

x,y,z, q, q̇,
h, u(q × 12)

Joint actions
×12
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Model-Based Gait Learning

Learn a system model from data, improving training efficiency and
minimizing the exploration space [3]

Figure 15: Training process diagram for model-based RL
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Walking Gait (Trot)

Training results in simulations and reality
SoftQ [3] Go2 [5]
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Reward Functions

Reward shaping is an art, often requiring intuition
Reward for SoftQ [3]: r = ϵ1

Ts
Tf

+ (1− ϵ2|vx(t)− vref|)− ϵ3∥ät∥− ϵ4∥at − σthreshold∥− ϵ5
(

at −
∑T

i=1 ai
T

)2
.

Reward for Go2 [5]:

Term Equation Weight

rvcmd
x,y

: xy velocity tracking exp{−|vxy − vcmd
xy |

2/σvxy} 0.02

rωcmd
z

: yaw velocity tracking exp{−(ωz − ωcmd
z )2/σωz} 0.01

r
ccmd
f

: swing phase tracking (force)
∑

foot[1− C
cmd
foot (θ

cmd, t)] exp{−|ffoot|2/σcf} −0.08
rccmd
v

: stance phase tracking (velocity)
∑

foot[C
cmd
foot (θ

cmd, t)] exp{−|vfoot
xy |

2/σcv} −0.08
rhcmd
z

: body height tracking (hz − hcmd
z )2 −0.2

rφcmd : body pitch tracking (φ− φcmd)2 −0.1
rscmd
y

: raibert heuristic footswing tracking (pfx,y,foot − pf,cmd
x,y,foot(s

cmd
y ))2 −0.2

r
h
f,cmd
z

: footswing height tracking
∑

foot(h
f
z,foot − h

f,cmd
z )2Ccmd

foot (θ
cmd, t) −0.6

z velocity v2z −4e−4
roll-pitch velocity |ωxy|2 −2e−5
foot slip |vfoot

xy |
2 −8e−4

thigh/calf collision 1collision −0.02
joint limit violation 1qi>qmax||qi<qmin −0.2
joint torques |τ |2 −2e−5
joint velocities |q̇|2 −2e−5
joint accelerations |q̈|2 −5e−9
action smoothing |at−1 − at|2 −2e−3
action smoothing, 2nd order |at−2 − 2at−1 + at|2 −2e−3

Table 1: Reward structure: task rewards, augmented auxiliary rewards, and fixed auxiliary rewards.

Task

Augmented Auxiliary

Fixed Auxiliary

3 Method

To obtain MoB, we train a conditional policy π(·|ct,bt) that achieves tasks specified by the com-
mand (ct) in multiple ways that result from different choices of behavior parameters, bt. The ques-
tion arises of how to define bt. We could learn behaviors using an unsupervised diversity metric,
but these behaviors might not be useful [4] and are not human tunable. To overcome these issues,
we leverage human intuition about useful behavior parameters (bt) corresponding to gait properties
like foot swing motion, body posture, and contact schedule [6, 7, 8, 23]. During training, the agent
receives a combination of task rewards (for velocity tracking), fixed auxiliary rewards (to promote
sim-to-real transfer and stable motion), and finally augmented auxiliary rewards (that encourage lo-
comotion in the desired style). During deployment in a novel environment, a human operator can
tune behavior of the policy by changing its input bt.

3.1 Task Structure for MoB

Task Specification. We consider the task of omnidirectional velocity tracking. This task is specified
by a 3-dimensional command vector ct = [vcmd

x , vcmd
y ,ωcmd

z ] where vcmd
x , vcmd

y are the desired linear
velocities in the body-frame x- and y- axes, and ωcmd

z is the desired angular velocity in the yaw axis.

Behavior Specification. We parameterize the style of task completion by an 8-dimensional vector
of behavior parameters, bt:

bt = [θcmd
1 ,θcmd

2 ,θcmd
3 ,f cmd,hcmd

z ,φcmd, scmd
y ,hf,cmd

z ].

θcmd = (θcmd
1 ,θcmd

2 ,θcmd
3 ) are the timing offsets between pairs of feet. These express gaits includ-

ing pronking (θcmd = (0.0, 0, 0)), trotting (θcmd = (0.5, 0, 0)), bounding, (θcmd = (0, 0.5, 0)),
pacing (θcmd = (0, 0, 0.5)), as well as their continuous interpolations such as galloping (θcmd =

(0.25, 0, 0)). Taken together, the parameters θcmd can express all two-beat quadrupedal contact pat-
terns; Figure 2 provides a visual illustration. f cmd is the stepping frequency expressed in Hz. As an
example, commanding f cmd = 3 Hz will result in each foot making contact three times per second.
hcmd
z is the body height command; φcmd is the body pitch command. scmd

y is the foot stance width
command; hf,cmd

z is the footswing height command.

Reward function. All reward terms are listed in Table 1. Task rewards for body velocity track-
ing are defined as functions of the command vector ct. Auxiliary rewards are used constrain the

4
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What if Multi-Robots?

Many real-world robotic tasks involve multiple robots working together:
• Cooperative transport
• Multi-robot exploration
• Multi-arm manipulation

Key challenges and needs:
• Building decentralized control systems with heterogeneity.
• Agents must learn policies not only from the environment but also

by anticipating and responding to other agents’ actions
• The environment becomes non-stationary for each agent (others

are constantly learning too)
• Requires learning coordination, adaptability, and often

negotiation
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Symbiosis!

What is Symbiosis?
A biological relationship where two or more organisms interact for
continuous existance, including mutualism, commensalism, and
parasitism.
• Mycorrhizal networks between trees and fungi — sharing resources and

information to support collective survival

Figure 16: Mycorrhizal networks between trees and fungi.
Focus on mutualism: Agents shares critical information to support
collective behaviors [6].
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Symbiosis into MARL (1)

Multi-agent environment

Buffer

Agent 1

Buffer

Agent 2

DQN Loss

Sampling

Sharing

Learning

obs

sharing

action

Q net
Symbiosis

Figure 17: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining
individual Q-networks for local decision making. The framework integrates sampling from the environment (orange
arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online
and target networks respectively, with individual buffers for experience replay. [6]
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Preliminary results

Figure 18: Layout of the simulated warehouse
environment (60m × 60m). [6]
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Figure 19: Evaluation of static recharging and MARL with and
without symbiosis. [6]

10.7% system performance improvement and 13.81% resource
utilization efficiency
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Symbiosis into MARL (2)

Symbiosis into reward shaping. [7]

Ri = αPi + β
∑
j̸=i

∆P(ai, aj),
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Thank you for your attention!
I look forward to your questions and discussions.

Feel free to reach out:
xuezhi.niu@it.uu.se
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